Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions.

نویسندگان

  • Yuri Kanno
  • Yusuke Jikumaru
  • Atsushi Hanada
  • Eiji Nambara
  • Suzanne R Abrams
  • Yuji Kamiya
  • Mitsunori Seo
چکیده

ABA plays important roles in many aspects of seed development, including accumulation of storage compounds, acquisition of desiccation tolerance, induction of seed dormancy and suppression of precocious germination. Quantification of ABA in the F(1) and F(2) populations originated from crosses between the wild type and an ABA-deficient mutant aba2-2 demonstrated that ABA was synthesized in both maternal and zygotic tissues during seed development. In the absence of zygotic ABA, ABA synthesized in maternal tissues was translocated into the embryos and partially induced seed dormancy. We also analyzed the levels of ABA metabolites, gibberellins, IAA, cytokinins, jasmonates and salicylic acid (SA) in the developing seeds of the wild type and aba2-2. ABA metabolites accumulated differentially in the silique and seed tissues during development. Endogenous levels of SA were elevated in aba2-2 in the later developmental stages, whereas that of IAA was reduced compared with the wild type. These data suggest that ABA metabolism depends on developmental stages and tissues, and that ABA interacts with other hormones to regulate seed developmental processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis.

The phytohormones abscisic acid (ABA) and gibberellins (GAs) are the primary signals that regulate seed dormancy and germination. In this study, we investigated the role of a double APETALA2 repeat transcription factor, CHOTTO1 (CHO1), in seed dormancy, germination, and phytohormone metabolism of Arabidopsis (Arabidopsis thaliana). Wild-type seeds were dormant when freshly harvested seeds were ...

متن کامل

Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology

Vivipary, germination of seeds on the maternal plant, is observed in nature and provides ecological advantages in certain wild species, such as mangroves. However, precocious seed germination in agricultural species, such as preharvest sprouting (PHS) in cereals, is a serious issue for food security. PHS reduces grain quality and causes economical losses to farmers. PHS can be prevented by tran...

متن کامل

Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy.

Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygen...

متن کامل

High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds.

Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) ...

متن کامل

INVITED REVIEW Plant hormone interactions during seed dormancy release and germination

This review focuses mainly on eudicot seeds, and on the interactions between abscisic acid (ABA), gibberellins (GA), ethylene, brassinosteroids (BR), auxin and cytokinins in regulating the interconnected molecular processes that control dormancy release and germination. Signal transduction pathways, mediated by environmental and hormonal signals, regulate gene expression in seeds. Seed dormancy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 51 12  شماره 

صفحات  -

تاریخ انتشار 2010